1、吸附分离应用背景:
吸附操作在化工、轻工、炼油、冶金和环保等领域都有着广泛的应用。如气体中水分的脱除,溶剂的回收,水溶液或有机溶液的脱色、脱臭,有机烷烃的分离,芳烃的精制等。
2、吸附的定义及概念:
固体物质表面对气体或液体分子的吸着现象称为吸附。其中被吸附的物质称为吸附质,固体物质称为吸附剂。
3、吸附机理的分类:
根据吸附质和吸附剂之间吸附力的不同,吸附操作分为物理吸附与化学吸附两大类。
⑴、物理吸附或称范德华吸附:它是吸附剂分子与吸附质分子间吸引力作用的结果,因其分子间结合力较弱,故容易脱附,如固体和气体之间的分子引力大于气体内部分子之间的引力,气体就会凝结在固体表面上,吸附过程达到平衡时,吸附在吸附剂上的吸附质的蒸汽压应等于其在气相中的分压。
⑵、化学吸附:是由吸附质与吸附剂分子间化学健的作用所引起,其间结合力比物理吸附大得多,放出的热量也大得多,与化学反应热数量级相当,过程往往不可逆。化学吸附在催化反应中起重要作用。本章主要讨论物理吸附。
4、吸附机理的判断依据:
⑴、化学吸附热与化学反应热相近,比物理吸附热大得多。如二氧化碳和氢在各种吸附剂上的化学吸附热为83740J/mol和62800J/mol,而这两种气体的物理吸附热约为25120J/mol和8374J/mol。
⑵、化学吸附有较高的选择性。如氯可以被钨或镍化学吸附。物理吸附则没有很高的选择性,它主要取决于气体或液体的物理性质及吸附剂的特性。
⑶、化学吸附时,温度对吸附速率的影响较显著,温度升高则吸附速率加快,因其是一个活化过程,故又称活化吸附。而物理吸附即使在低温下,
附速率也可能较大,因它不属于活化吸附。
⑷、化学吸附总是单分子层或单原子层,而物理吸附则不同,低压时,一般是单分子层,但随着吸附质分压增大,吸附层可能转变成多分子层。
5、吸附剂的再生及方法:
吸附剂的再生,即吸附剂脱附,对吸附过程是非常重要的,通常采用的方法:提高温度或降低吸附质在气相中的分压,这样的结果:吸附质将以原来的形态从吸附剂上回到气相或液相,这种现象称为“脱附”,所以物理吸附过程是可逆的。吸附分离过程正是利用物理吸附的这种可逆性来实现混合物的分离。
6、吸附分离过程的分类:
目前工业生产中吸附过程主要有如下几种:
①、变温吸附 在一定压力下吸附的自由能变化ΔG有如下关系:
ΔG=ΔH-TΔS (9-1)
式中ΔH为焓变,ΔS为熵变。当吸附达到平衡时,系统的自由能,熵值都降低.故式(9-1)中焓变ΔH为负值,表明吸附过程是放热过程,可见若降低操作温度,可增加吸附量,反之亦然。因此,吸附操作通常是在低温下进行,然后提高操作温度使被吸附组分脱附。通常用水蒸汽直接加热吸附剂使其升温解吸,解吸物与水蒸汽冷凝后分离。吸附剂则经间接加热升温干燥和冷却等阶段组成变温吸附过程,吸附剂循环使用。
②、变压吸附 也称为无热源吸附。恒温下,升高系统的压力,床层吸附容量增多,反之系统压力下降,其吸附容量相应减少,此时吸附剂解吸、再生,得到气体产物的过程称为变压吸附。根据系统操作压力变化不同,变压吸附循环可以是常压吸附、真空解吸,加压吸附、常压解吸,加压吸附、真空解吸等几种方法。对一定的吸附剂而言,压力变化愈大,吸附质脱除得越多。
③、溶剂置换 在恒温恒压下,已吸附饱和的吸附剂可用溶剂将床层中已吸附的吸附质冲洗出来,同时使吸附剂解吸再生。常用的溶剂有水、有机溶剂等各种极性或非极性物质。
7、吸附分离过程的适用范围:
吸附分离是利用混合物中各组分与吸附剂间结合力强弱的差别,即各组分在固相(吸附剂)与流体间分配不同的性质使混合物中难吸附与易吸附组分分离。适宜的吸附剂对各组分的吸附可以有很高的选择性,故特别适用于用精馏等方法难以分离的混合物的分离,以及气体与液体中微量杂质的去除。此外,吸附操作条件比较容易实现。
9.1.2、常用吸附剂
1、工业吸附剂的定义:
通常固体都具有一定的吸附能力,但只有具有很高选择性和很大吸附容量的固体才能作为工业吸附剂。
2、吸附剂的选择原则:
吸附剂的性能对吸附分离操作的技术经济指标起着决定性的作用,吸附剂的选择是非常重要的一环,一般选择原则为:
①、具有较大的平衡吸附量。一般比表面积大的吸附剂,其吸附能力强;
②、具有良好的吸附选择性;
③、容易解吸,即平衡吸附量与温度或压力具有较敏感的关系;
④、有一定的机械强度和耐磨性,性能稳定,较低的床层压降,价格便宜等。
3、吸附剂的种类:
目前工业上常用的吸附剂主要有活性炭,活性氧化铝,硅胶,分子筛等。
⑴、活性炭
①、活性炭的结构特点:是具有非极性表面,是一种疏水性和亲有机物的吸附剂,故又称为非极性吸附剂。
②、活性炭的优点:是吸附容量大,抗酸耐碱、化学稳定性好,解吸容易,在高温下进行解吸再生时其晶体结构不发生变化,热稳定性高,经多次吸附和解吸操作,仍能保持原有的吸附性能。
③、活性炭常用于溶剂回收,溶液脱色、除臭、净制等过程。是当前应用最普遍的吸附剂。
④、活性炭的制备:通常所有含碳的物料,如木材,果壳,褐煤等都可以加工成黑炭,经活化制成活性炭。活化方法主要有两种:即药品活化和气体活化。药品活化是在原料中加入药品,如ZnCl2、H3PO4等,在非活性气体中加热,进行干馏和活化。气体活化是通入水蒸汽、CO2、空气等在700~1100℃下反应,使之活化。炭中含水会降低其活性。一般活性炭的活化表面约600~1700m2/g。
⑵、硅胶
硅胶是一种坚硬无定形链状和网状结构的硅酸聚合物颗粒,是一种亲水性极性吸附剂。因其是多孔结构.比表面积可达350m2/g左右。工业上用的硅胶有球型、无定型、加工成型及粉末状四种。主要用于气体的干燥脱水,催化剂载体及烃类分离等过程。
⑶、活性氧化铝
活性氧化铝为无定形的多孔结构物质,一般由氧化铝的水合物(以三水合物为主)加热,脱水和活化制得,其活化温度随氧化铝水合物种类不同而不同,一般为250~500℃。孔径约从20Å到50Å。典型的比表面积为200~500m2/g。活性氧化铝具有良好的机械强度,可在移动床中使用。对水具有很强的吸附能力,故主要用于液体和气体的干燥。
⑷、分子筛
沸石吸附剂是具有特定而且均匀一致孔径的多孔吸附剂,它只能允许比其微孔孔径小的分子吸附上去,比其大的分子则不能进入,有分子筛的作用,故称为分子筛。
分子筛(合成沸石)一般可用 式表示的含水硅酸盐。其中M表示金属离子,多数为钠、钾、钙,也可以是有机胺或复合离子。n表示复合离子的价数,y和w分别表示SiO4和H2O的分子数,y又称为硅铝比,硅铝比为2左右的称为A型分子筛,3左右的称为X型分子筛,3以上称为Y型分子筛。
根据原料配比、组成和制造方法不同,可以制成不同孔径(一般从3Å到8Å)和形状(圆形、椭圆形)的分子筛。分子筛是极性吸附剂,对极性分子,尤其对水具有很大的亲和力。由于分子筛突出的吸附性能,使得它在吸附分离中有着广泛的应用,主要用于各种气体和液体的干燥,芳烃或烷烃的分离及用作催化剂及催化剂载体等。表9-1所示为分子筛的特性与应用。