爱采购

发产品

  • 发布供应
  • 管理供应

放射性同位素物质代放谢的研究

   2019-08-05 124
导读

放射性同位素物质代放谢的研究

物质代放谢的研

体内存在着很多种物质,究竟它们之间是如何转变的,如果在研究中应用适当的同位素标记物作示踪剂分析这些物质中同位素含量的变化,就可以知道它们之间相互转变的关系,还能分辩出谁是前身物,谁是产物,分析同位素示踪剂存在于物质分子的哪些原子上,可以进一步推断各种物质之间的转变机制。为了研究胆固醇的生物合成及其代谢,采用标记前身物的方法,揭示了胆固醇的生成途径和步骤,实验证明,凡是能在体内转变为乙酰辅酶A的化合物,都可以作为生成胆固醇的原料,从乙酸到胆固醇的全部生物合成过程,至少包括36步化学反应,在鲨烯与胆固醇之间,就有二十个中间物,胆固醇的生物合成途径可简化为:乙酸→甲基二羟戊酸→胆固醇 又如在研究肝脏胆固醇的来源时,用放射性同位素标记物3H-胆固醇作静脉注射的示踪实验说明,放射性大部分进入肝脏,再出现在粪中,且甲状腺素能加速这个过程,从而可说明肝脏是处理血浆胆固醇的主要器官,甲状腺能降低血中胆固醇含量的机理,在于它对血浆胆固醇向肝脏转移过程的加速作用。

2.物质转化的研究

物质在机体内相互转化的规律是生命活动中重要的本质内容,在过去的物质转化研究中,一般都采用用离体酶学方法,但是离体酶学方法的研究结果,不一定能代表整体情况,同位素示踪技术的应用,使有关物质转化的实验的周期大大缩短,而且在离体、整体、无细胞体系的情况下都可应用,操作简化,测定灵敏度提高,不仅能定性,还可作定量分析。在阐明核糖苷酸向脱氧核糖核苷酸转化的研究中,采用双标记法,对产物作双标记测量或经化学分离后分别测量其放射性。如在鸟嘌呤核苷酸(GMP)的碱基和核糖上分别都标记上14C,在离体系统中使之参入脱氧鸟嘌呤核苷酸(dGMP),然后将原标记物和产物(被双标记GMP掺入的dGMP)分别进行酸水解和层析分离后,测定它们各自的碱基和戊糖的放射性,结果发现它们的两部分的放射性比值基本相等,从而证明了产物dGMP的戊糖就原标记物GMP的戊糖,而没有别的来源,否则产物dGMP的碱基和核糖的比值一定与原标记物GMP的两部分比值有显著差别。这个实验说明戊糖脱氧是在碱基与戊糖不分记的情况下进行的,从而证明了脱氧核糖核苷酸是由核糖核苷酸直接转化而来的,并不是核糖核苷酸先分解成核糖与碱基,碱基再重新接上脱氧杭核糖。无细胞的示踪实验可以分析物质在细胞内的转化条件,例如以3H-dTTP为前身物作DNA掺入的示踪实验,按一定的实验设计掺入后,测定产物DNA的放射性,作为新合成的DNA的检出指标。

3.动态平衡的研究

阐明生物体内物质处于不断更新的动态平衡之中,是放射性同位素示踪法对生命科学的重大贡献之一,向体内引入适当的同位素标记物,在不同时间测定物质中同位素含量的变化,就能了解该物质在体内的变动情况,定量计算出体内物质的代谢率,计算出物质的更新速度和更新时间等等。机体内的各种物质都在有大小不同的代谢库,代谢库的大小可用同位素稀释法求也。

4.生物样品中微量物质的分析

在放射性同位素示踪技术被应用之前,由于制备样品时的丢失而造成回收率低以及测量灵敏度不高等问题,使得对机体正常功能起很重要作用的微量物质不易被测定。近年来迅速发展、应用愈来愈广泛的放射免疫分析(radioimmunoassay)技术是一种超微量的分析方法,它可测定的物质300多种,其中激素类居多,包括类固醇激素,多肽类激素,非肽类激素,蛋白质物质,环核苷酸,酶,肿瘤相关的抗原,抗体以及病原体,微量药物等其它物质。

5.最近邻序列分析法(Nearest neighbour-sequence analysis method)

放射性同位素示踪技术,是分子生物学研究中的重要手段之一,对蛋白质生物合成的研究,从DNA复制、RNA转录到蛋白质翻译均起了很大的作用。最近邻序列分析法应用同位素示踪技术结合酶切理论和统计学理论,研究证实了DNA分子中碱基排列规律,在体外作合成DNA的实验:分四批进行,每批用一种不同的32P标记脱氧核苷三磷酸,32P标记在戊糖5C的位置上,在完全条件下合成后,用特定的酶打开5C-P键,使原碱基上通过戊糖5C相连的32P移到最邻近的另一单核苷酸的3C上 。用最近邻序列分析法首次提出了DNA复制与RNA转录的分子生物学基础,从而建立了分子杂交技术,例如以噬体T2-DNA为模板制成[32P]RNA,取一定量T2-DNA和其它一些DNA加入此[32P]RNA中,经加热使DNA双链打开,并温育,用密度梯度离心或微孔膜分离出DNA-[32P]RNA复合体测其放射性,实验结果只有菌体T2的DNA能与该[32P]RNA

形成放射性复合体。从而证明了RNA与DNA模板的碱基呈特殊配对的互补关系,用分子杂交技术还证实了从RNA到DNA的逆转录现象。此外,放射性同位素示踪技术对分子生物学的贡献还表现在:⑴对蛋白质合成过程中三个连续阶段,即肽链的起始、延伸和终止的研究;⑵核酸的分离和纯化;⑶核酸末端核苷酸分析,序列测定;⑷核酸结构与功能的关系;⑸RNA中的遗传信息如何通过核苷酸的排列顺序向蛋质中氨基酸传递的研究等等。为了更好地应用放射性同位素示踪技术,除了有赖于示踪剂的高质量和核探测器的高灵敏度外,关键还在于有科学根据的设想和创造性的实验设计以及各种新技术的综合应用。

 
举报收藏 0打赏 0
免责声明
• 
本文为原创作品,作者: 。欢迎转载,转载请注明原文出处:https://www.kongfen.org.cn/tech/show-2039.html 。本文仅代表作者个人观点,本站未对其内容进行核实,请读者仅做参考,如若文中涉及有违公德、触犯法律的内容,一经发现,立即删除,作者需自行承担相应责任。涉及到版权或其他问题,请及时联系我们。
 
更多>同类空分技术

入驻

企业入驻成功 可尊享多重特权

入驻热线:

请手机扫码访问

客服

客服热线:

小程序

小程序更便捷的查找产品

为您提供专业帮买咨询服务

请用微信扫码

公众号

微信公众号,收获商机

微信扫码关注

顶部