1.2.2 半导体光催化技术
在继Fujishima等有关TiO2单晶电极上光解水的报道[6]之后,1977年Frank等人利用半导体材料对污染物进行光催化降解取得了突破性的进展[7-8],从此半导体多相光催化作为一个崭新的领域得到了深入而广泛的研究[9]。 具有多相光催化性能的半导体包括WO3、TiO2、CdS、ZnS、ZnO、Fe2O3、CdSe等[10],其中的TiO2由于具有抗化学和光腐蚀、性能稳定、无毒、催化活性高、价廉等优点[11]而最受重视和具有广阔的应用前景。
半导体的能带结构是不连续的,充满电子的价带(VB)和空的导带(CB)之间由禁带隔开。用作各催化剂的半导体大多为金属氧化物和硫化物,一般具有较大的禁带宽度,其中TiO2在pH为1时的带隙是3.2eV。当光子能量高于半导体吸收阀值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带,从而产生光生空穴和电子;这些光生空穴和电子具有很强的氧化和还原能力,可以将吸附到光催化剂表面的污染物彻底降解为无毒无害的无机小分子化合物,无二次污染问题。
多年来,半导体光催化反应研究主要集中于液-固相反应,对于气-固相反应则研究得相对较少[12]。对于使用TiO2进行有机物的气-固多相光催化氧化已研究过烷烃[13]、醇[14]、醛[15]、酮[16]、芳香族化合物[17]、卤化物[18];也有NOx、汽车尾气、室内空气、菌[19]等的光催化氧化研究报道。日本在气固光催化反应应用方面的工作较为突出,他们将光催化剂固定在建材、路面、瓷片、外墙、内墙等基体上,利用太阳光和室内照明光,通过光催化作用使吸附在催化剂表面的污染物发生强的氧化分解,从而减轻环境有害气体污染物。而我国在这方面的研究还有待进一步的开拓。
本课题组在纳米TiO2材料以及掺杂改性纳米TiO2材料的制备、表征以及光催化性能研究方面的工作卓有成效[20-24],在积累丰富的半导体光催化处理废水方面的经验之后,正在半导体光催化剂处理有机气相污染物方面作进一步深入的研究工作,同时设计了新型光催化反应器[25],努力为有机气相污染物的治理做出应有的贡献。
2 讨论
当前,工厂废气、汽车尾气、化石燃料燃烧废气、居室装修材料等释放的有机物以及其他的细菌、真菌等气体污染物正日益严重地危害地球生态环境和人类的健康。事实上,我国的空气污染问题已不容忽视。然而,通常的污染处理方法均具有处理不彻底,成本高,存在二次污染或普适性差的问题。半导体多相光催化法所用二氧化钛无毒、廉价易得、耐光腐蚀与化学腐蚀,光活性较强,因而受到广泛关注。在适宜的条件下,二氧化钛光催化能无选择性地将气-固界面中的难以化学氧化分解的“三致”有机物彻底矿化为CO2、水和无机酸,且无二次污染,也可以氧化无机空气污染物、杀灭有害菌。因此,多相光催化净化空气是具有广泛应用前景的空气污染治理技术,该技术的核心是高效半导体光催化剂。本课题组研究着眼于制备光催化净化技术所需核心材料-光催化剂,设计普适化的光催化反应器,通过不同改性的方法以提高光催化剂的吸附能力、光吸收能力、电荷分离能力,同时尝试不同的方法将光催化剂负载于载体上,从实际上探讨复合光催化剂在室内空气净化上的应用。这将为我国空气污染治理提供有力的支持,为空气净化提供新型的环保材料和普适反应器,改变我国在这方面落后于日本等国家的形势,同时新型改性纳米二氧化钛光催化材料可望成为新世纪环境友好与环境修复材料,在更多方面得到广泛的应用,因而具有非常重要的理论与实际意义。