我国工业余热回收利用技术

   2011-08-28 5980


  此外,通过余热锅炉或换热器从工艺流程中回收的大量蒸汽,其中1兆帕左右的低压饱和蒸汽或热水占很大比例,大量剩余常被放散。目前这类低压饱和蒸汽发电利用,主要是采用螺杆膨胀动力机技术。该技术具有以下特点:可用多种热源工质作为动力源,适用于过热蒸汽、饱和蒸汽、汽液两相混合物,也适用于烟气、含污热水、热液体等;结构简单紧凑,可自动调节转速,寿命长,振动小;机内流速低,除泄露损失外,其他能量损失少,效率高;双转子非接触式的特性,运转时形成剪切效应具有自清洁功能、自除垢能力。

  螺杆膨胀动力机属于容积式膨胀机,受膨胀能力限制,直接驱动螺杆膨胀动力机的热源应用范围为压力0.15~3.0兆帕、温度低于300℃的蒸汽或压力0.8兆帕以上、温度高于170℃的热水等,由于结构特点,螺杆膨胀动力机单机功率有限,多数在1 000千瓦以下,主要用于余热规模较小的场合。

  3. 制冷制热技术

  (1)余热制冷技术

  与传统压缩式制冷机组相比,吸收式或吸附式制冷系统可利用廉价能源和低品位热能而避免电耗,解决电力供应不足问题;采用天然制冷剂,不含对臭氧层有破坏的含氯氟类物质,具有显著的节电能力和环保效益,在20世纪末得到了广泛的推广应用。

  吸收式和吸附式制冷技术的热力循环特性十分相近,均遵循“发生(解析)—冷凝—蒸发—吸收(吸附)”的循环过程,但吸收式制冷的吸收物质为流动性良好的液体,制冷工质为氨—水、溴化锂水溶液等,其发生和吸收过程通过发生器和吸收器实现;吸附式制冷吸附剂一般为固体介质,吸附方式分为物理吸附和化学吸附,常使用分子筛—水、氯化钙—氨等工质对,解析和吸附过程通过吸附器实现。

  以溴化锂水溶液为工质的吸收式制冷系统应用最广泛,一般可利用80~250℃范围的低温热源,但由于用水做制冷剂,只能制取0℃或5℃以上的冷媒温度,多用于空气调节或工业用冷冻水,能效比因制冷工质对热物性和热力系统循环方式的不同而有很大变化,实际应用的机组能效比多不超过2,远低于压缩式制冷系统。但是此类机组可以利用低温工业余热、太阳能、地热等低品位热能,不消耗高品质电能,在工业余热利用方面有一定优势。吸收式余热制冷机组制冷效率高,适用于大规模热量的余热回收,制冷量小可到几十千瓦,高可达几兆瓦,在国内已获得大规模应用,技术成熟,产品的规格和种类齐全。

  吸附式制冷机的制冷工质对种类很多,包括物理吸附工质对、化学吸附工质对和复合吸附工质对,适用的热源温度范围大,而且不需要溶液泵或精馏装置,也不存在制冷机污染、盐溶液结晶以及对金属的腐蚀等问题。吸附式制冷系统结构简单,无噪音,无污染,可用于颠簸震荡场合,如汽车、船舶,但制冷效率相对低,常用的制冷系统性能系数多在0.7以下,受限于制造工艺,制冷量小,一般在几百千瓦以下,更适合低热量余热回收利用,或用于冷热电联产系统。

  (2)热泵技术

  工业生产中存在大量略高于环境温度的废热 (30~60℃),如工业冲渣水、油田废水等,温度很低,但余热量大,热泵技术常被用于回收此类余热资源。

  热泵以消耗一部分高质能(电能、机械能或高温热能)作为补偿,通过制冷机热力循环,把低温余热源的热量“泵送”到高温热媒,如50℃以上的热水,可满足工农商业的蒸馏浓缩、干燥制热或建筑物采暖等对热水的需求。目前,热泵机组的供热系数在3~5之间,即消耗1 千瓦电能,可制得3~5千瓦热量,在一定条件环境下是利用略高于环境温度废水余热的经济可行的技术。

  当前研制生产的大都是压缩式热泵,中型热泵正在开发,大型热泵尚属空白。压缩式热泵中以水源热泵技术应用最为广泛,可用于火电厂或核电厂循环水余热、印染、制药等行业的余热回收。例如,电厂以循环水作为热源水,通过热泵机组提升锅炉给水品位,使原有的锅炉给水由15℃提升到50℃,减少锅炉对燃煤的需求量,达到节能降耗的目的。

  综上所述,余热利用的技术设备种类繁多,但都有一定的适用条件,应当根据工业余热温度、余热量,结合生产条件、工艺流程、内外能量需求,选择合适的余热利用方式。

  基于有机介质的低温工业余热发电技术

  1. 低温有机朗肯循环

  对于大量废弃的200℃以下的低温余热,目前无法利用蒸汽或热水闪蒸系统进行有效回收,更适宜采用经济可行的有机朗肯循环余热发电技术。

  基于有机介质的低温工业余热发电技术属于热功转换技术。有机朗肯循环是以低沸点有机物为工质的朗肯循环,与常规的蒸汽发电装置的热力循环原理相同,只是循环工质不同而已,系统更简单紧凑。这种发电方式对低温范围余热利用有显著优势,余热物流与工质不直接接触,有机工质蒸汽比容小,管道尺寸小,透平通流面积小,单位体积功率较大,非常适宜于低温余热回收。

  有机工质的选取是有机朗肯循环余热发电技术的重要环节。通常要求工质应满足:发电性能好;传热性能好;工质临界参数、常压下沸点等热物理性质适宜;化学稳定性好、不分解、腐蚀性小、毒性小、环保、不易燃易爆;经济性好,来源丰富,价格低。但是在实际应用中,工质很难同时满足上述全部条件,而且随着国际上对有机工质环保要求的日益提高,可用工质不断更新,因此应根据热源类型及温度品位,综合考虑。

  有机朗肯循环发电系统设备中,热交换器、泵与管路阀门等的设计制造可参考化工、制冷行业的热交换设备,发电机是系列产品,仅透平膨胀机的选型设计以及密封技术需要区别对待,进行非标准设计。常用的透平膨胀机有多级轴流透平,适用于温度较高、工质流量大、总焓降大、容量大的情况,但相对内效率相对低,工艺较复杂;径流式透平相对内效率相对高,结构紧凑、工艺制造简单,但单机容量小,在国外余热利用中有很多应用实例,适用于余热回收量较小的情况。

  2. Kalina循环

  纯工质有机朗肯循环,由于工质的等温蒸发吸热过程与实际的变温低温热源配合不紧密,换热平均温差大,不可逆损失较大。Kalina循环是以氨水混合物为工质的循环系统,最简单的热力循环是一级蒸馏循环,即一定浓度的氨水溶液经过水泵加压、预热器升温之后,进入余热锅炉蒸发,形成过热氨水蒸汽进入透平膨胀做功,然后利用复杂的蒸馏冷却子系统解决氨水混合物冷凝问题,使透平乏汽重新形成一定浓度的工质溶液,再到达给水泵,完成一个循环。

  Kalina循环在蒸发过程中工质等压变温蒸发,减少了工质吸热过程的不可逆性,又因为冷凝过程中的基本工质含氨低,克服了混合工质有机朗肯循环冷凝损失大的弱点。有理论分析,Kalina循环比纯工质的有机朗肯循环循环系统性能高出15%以上,但在实际运行中,由于氨水混合工质蒸发过程的复杂性等因素,Kalina循环并未表现出非常高的性能。

  研究表明,在中低温余热回收利用中,针对不同的余热类型,Kalina循环和朗肯循环在余热回收利用方面各有优势,对于温度和流量一定、余热回收利用后以一定的温度排出用于生产过程的余热源,有机朗肯循环低温余热回收系统更具有优势。

  结语

  当前我国中高温余热利用技术普及率不高,低温余热利用由于技术不成熟基本废弃。因此,推进工业节能减排工作,一方面要进一步推广普及中高温余热利用技术,尤其是提高中小型企业余热利用率,优化整个工艺系统及其相应的余热利用技术。另一方面,从技术发展看,低温有机朗肯循环技术是利用低温工业余热、地热、太阳能的经济有效方案,但国内未掌握该技术,因此强化研究有机朗肯循环等低温余热发电技术,并积极进行工程应用推广,对提高低品位余热利用率会起到重要作用。

  作者单位:清华大学热能工程系

本网凡注明出处为“《中国循环经济》”的所有稿件,版权均属本网站所有,未经授权不得转载。如需转载,请与010-82290313联系授权事宜;转载请务必注明稿件来源:"《中国循环经济》"。本网未注明出处和转载的,是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性,仅供读者参考,若据本文章操作,所有后果读者自负,本网站概不负任何责任。如转载稿件涉及版权等问题,请在两周内来电或来函联系。
 
举报收藏 0打赏 0评论 0
 
更多>同类新闻资讯
  • admin
    加关注1
  • 没有留下签名~~
推荐图文
推荐新闻资讯
点击排行
网站首页  |  免责声明  |  关于我们  |  联系方式  |  隐私政策  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  RSS订阅  |  违规举报  |  鲁ICP备12015736号